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In keeping with the Duke Robotic�s goal of ever increasing innovation, the team has 

worked to improve all facets of Charybdis, our autonomous underwater vehicle (AUV).  
Using the lessons learned over the past few years, Charybdis builds upon its strengths while 
addressing the many weaknesses in the previous design.  This year Charybdis retains its 
hallmarks of agility, precision navigation, and light weight while gaining greater 
environmental sensory capability and translational movement control.  

With the help of strong sponsorship support from Duke University and private donors, 
the Duke Robotics Team upgraded a large part of the Charybdis feature set by adding 
stabilizing fins, a refined acoustics system, improved power conversion chips, and enhanced 
vision software. 

As before, Charybdis is constructed with commercial-grade components and 
craftsmanship in order to provide a reliable and stable platform. Lithium polymer batteries 
provide power to the thrusters and the electronics tube, which houses a new Versalogic 
computer, Diamond Systems DAC, wireless Ethernet card, power management board, relays, 
and DC/DC converters. Subconn connectors that pass through the tube bulkheads are used to 
prevent leaks. A powerful software suite includes device drivers that control a full set of 
sensors, computer vision algorithms, high-level mission control and decision-making 
software, as well as a scripting language supporting intuitive entry of mission parameters. 
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Introduction 
After the 8th Annual Office of Naval 

Research/AUVSI International Underwater 
Robotics Competition in 2005, Duke Robotics 
decided to address several weaknesses of the 
vehicle that surfaced during and after the 
competition. Charybdis was revised in an 
effort to increase the versatility and stability of 
our already innovative platform. Charybdis 
itself was created as a successor to our unique 
Gamera AUV that competed in the 2001-2003 
competitions. 

Charybdis was designed around a 
unique and groundbreaking propulsion system. 
Three thrusters mounted around a circular 
chassis enable the vehicle, with appropriate 
control algorithms, to move in any direction 
without rotating, yielding full holonomic 
control. A fourth thruster positioned vertically 
controls up and down motion. This system 
allows for unprecedented precision and agility 
in an Autonomous Underwater Vehicle. Other 
physical components were designed around 
this basic plan, with the airtight electronics and 
battery tubes arranged with the sensors around 
the central thruster housing. Two translucent 
acrylic shells encapsulate these components 
for protection and to remove concepts of 
�front� and �back� from the drag profile. 

The electronics suite was rebuilt with 
new components to simplify the electronics 
stack and increase reliability. This task was 
completed with an eye toward upgradeability 
and with the intention of not having to unseal 
the electronics tube unless a new component is 
being installed.  The power system was also 
upgraded from lead acid to lithium polymer 
batteries, providing 8 times the power density. 

Finally, the software package was 
completely redesigned with a new, more 
intuitive waypoint scripting language. The rest 
of the mission and control logic was rewritten 
to place the entire body of code within a 
modular, object-oriented framework. 
 

Propulsion 
Three Tecnadyne 250 propeller-based 

thrusters are mounted around the perimeter of 
the round hull, each 120 degrees apart. Since 
each thruster has bi-directional variable power, 
it is possible to move in any horizontal-plane 
direction by using the correct combination of 
thrust. A fourth thruster is mounted vertically 
in a low-loss channel that runs through the 
middle of the vehicle and allows vertical 
control. This gives Charybdis 4 DOF 
holonomic control, while pitch and roll are 
taken care of with a positive righting moment 
created by appropriate weight and flotation 
distribution. 

This central thruster, which draws 
water through the machine, is the inspiration 
for the vehicle's name. In Greek mythology 
Charybdis was the daughter of Poseidon and 
Gaia until Zeus turned her into a monster. She 
lived in a cave in the Straight of Messina and 
sucked water in and out three times a day, 
forming a whirlpool that destroyed passing 
ships. Charybdis, opposite the straight from 
the six-headed monster Scylla, was one of the 
obstacles in Homer's Odyssey. 

A mathematical model was developed 
that determines the thrust contribution from 
each thruster to move in a particular direction. 
This model ensures that the overall net thrust 
vector passes through Charybdis' center of 
mass (which is roughly the center of drag), 
thereby preventing a rotational moment. The 
Tecnadyne thrusters don't have a linear force 
response to voltage, nor are they 
symmetrically powerful, having 12 lbs thrust 

Figure 1: Thruster 



Duke Robotics Team  3 

in the forward direction and only 6 in reverse. 
Thus, a lookup table was added that converts 
the desired force contribution from each 
thruster into the required voltage, taking into 
account these nonlinearities. The computer 
applies this voltage through a DAC card and 
amplifiers, which are on a separate circuit 
from the electronics to protect the sensitive 
devices from high current.  

The central thruster is simpler. It gives 
control in the vertical direction, or Z-axis. 
Since this thruster is located at the center of 
mass, there is never a concern about a 
rotational moment. A low-loss channel runs 
through the vehicle with the thruster mounted 
in the middle. This channel also serves a 
mechanical purpose by taking weight off of 
the shells and sensors during storage and 
display of the vehicle. The Z-axis thruster is 
oriented with the more powerful side pointed 
upward to counteract the natural slight 
buoyancy of Charybdis. 

In the 2004 competition Charybdis�s 
center thruster control chip was damaged by 
water in a pierced cable. To prevent future 
leakage, all thruster end caps were upgraded 
with bulkhead connectors to guarantee full 
water blockage.  Micro connectors were used 
on the thrusters and the electronics tube end 
cap to reduce the space consumed by 
connectors. A backup thruster was also 
acquired as a spare, as our platform depends 

on all four thrusters being operational for total 
control. 

 
Connectors and Wet/Dry 
Interfaces 

Consistent with the Charybdis design 
team's goals of industry standard construction 
and components, all electrical connections and 
wet/dry interfaces use Subconn Low Profile 
Series underwater connectors. These 4 and 7 
pin cables can be wet mated and will not short 
or leak. Components were either purchased 
with Subconn cabling, as in the case of the 
thrusters, or were sent to Open Ocean 
Engineering to have Subconns potted onto the 
open-ended whips, like the DVL. The 
aluminum end caps of the electrical, battery, 
and camera housings all have Subconn 
bulkhead connectors to ensure that water 
doesn't enter these dry spaces. The 2005 
vehicle utilizes many Micro Low Profile 
Series connectors to reduce the space used by 
bulkhead connectors for easier and faster cable 
connection/disconnection. 

 
Chassis and Shells 

Ultra-High Molecular Weight 
(UHMW) polyethylene was selected to serve 
as the chassis. This decision was made based 
on the Duke Robotics Team's success using 
this material on Gamera. Work began by 
cutting a circle 28" in diameter with Abrasive 
Water Cutting Techniques, and then holes 
were added for the electronics and battery 
tubes, DVL, pressure sensor, camera housing, 
altimeter, and central thruster. Some later 
adjustments were made with the mill in the 
Duke Undergraduate Machine Shop. 

The translucent shells were fabricated 
by free-form techniques out of acrylic. They 
have holes to allow the sensors and central 
thruster to protrude unimpeded. The purpose 
of these shells is to protect the internal devices 
from damage, as well as to move the center of 
drag to the middle of the vehicle, to coincide 

Figure 2: Z-Intake 
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with the center of mass. Without the shells, it 
would be difficult to move in a straight line 
because the direction-dependent drag profiles, 
from protrusions such as sensors and the 
electronics tube, would cause Charybdis to 
spin and complicate control algorithms. 
 
Static Stabilizer Fins 

The static stabilizer fins, one set 
located on each side of the rear, eliminate the 
high-velocity pitch control problems of 
previous years. They now allow Charybdis to 
operate with at least 150% of its previous 
velocity threshold, making the robot much 
more competitive in the event that time 
becomes a deciding factor. They have an angle 

of attack less than 12 degrees to avoid the 
development of significant drag forces and are 
located as far towards the back as possible 
without adding extensions. This is to provide 
the maximum correcting moment without 
compromising the radial symmetry that gives 
the robot full holonomic capabilities. 
      A new chassis has been developed to 
include dynamic stabilizer fins that are 
actively controlled by the computer. They are 
to be deployed only when critical velocities 
are achieved so that they do not interfere with 
holonomic sensor sweeping. This technology 

is still being perfected, but will make its debut 
in a subsequent competition. 
 
Electronics and Battery 
Housings 

Two dry tubes are used to house the 
electronics and batteries. Each is constructed 
of clear acrylic and capped with anodized 
aluminum bulkheads equipped with double O-
ring seals. The battery housing is 12" long 
with 4.5" external diameter, while the 
electronics tube has greater volume at 10.5" 
length and 8" external diameter. Both of these 
sizes were chosen to maximize usable space 
and fit between the center thruster mount and 
outer shells of the robot. 
 
Buoyancy 

The two dry compartments, containing 
the batteries and electronics, have positive net 
buoyancy. These elements sit opposed to the 
DVL, which, due to its weight, has negative 
net buoyancy. To balance Charybdis, flotation 
inserts for the DVL area were created from 
shape-able foam and weights were added near 
the two tubes. Charybdis is slightly positively 
buoyant as a safety measure, causing the 
vehicle to surface in the event of a power loss. 

 
Pressure Sensor 

Charybdis uses an MSP-600 pressure 
sensor manufactured by MSI. The output of 
this sensor is in the form of a 0-5V level, 
which is converted by the computer into a 
depth measurement. This data is used to 
maneuver and remain submerged. If the robot 
deviates too far from the desired depth, the 
central thruster is used to make corrections. 
 
Doppler Velocity Logger 

This year Duke Robotics completed its 
purchase of an RD Instruments Workhorse 
Navigator 1200 kHz DVL at a generous 
discount. This sensor is the main tool in 

Figure 3: Static Stabilizer Fin 
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Charybdis' dead-reckoning navigation system. 
By measuring the Doppler shift from four 
SONAR beams, the DVL is able to determine 
vehicle speed and, after integrating over time, 
distance traveled. It communicates this 
information, plus several other useful data 
including compass heading, pitch, and roll, to 
the main computer using the RS-232 protocol 
over a Subconn connection. 

Passive Acoustics 
Charybdis' acoustics system uses an 

array of four hydrophones arranged in a square 
about the widest part of the chassis.  The DAC 
samples the hydrophones to determine the time 
each received the ping.  An overspecified 
system of equations that relates the geometry 
of the hydrophone array to the relative times of 
receipt is then optimized to find the bearing 
angle.  In concept, the distance from the 
vehicle to the pinger could also be computed 
from the pairwise time differences, but the 
samples are not yet of sufficient quality to 
make this observation practical.  A Fourier 
transform could be performed on the data to 
isolate on a ping of known frequency.  This 
improvement has been considered for a future 
version. 
 

Voltage Meters and 
Temperature Sensors 

Available for optional use in Charybdis 
2005 are temperature and voltage sensors.  The 
voltage sensors are on a plastic mount that 
attaches above or to the back of the DC/DC 
board.  Two voltage meters indicate the 
voltage of each 30-volt battery power channel.  
These can be used to visually monitor battery 
voltage without using a multimeter.  The 
meters require an input of 9V DC provided via 
a standard 9-volt battery. 

The temperature sensing circuits are 
two boards with temperature chips mounted to 
them.  The chips require 5V DC power to 
operate.  Each chip produces a 0-5V output to 
be read by the DAC.  The temperature sensors 
are placed near temperature-sensitive 
components, ideally the CPU and the 5V 
DC/DC converter. 

 
Leak Detection System 

Available for optional use in Charybdis 
2005 is a leak detection system.  The system 
must be installed into the E-Tube by drawing 
two small wires .5cm apart with conductive 
ink.  The amplification/threshold circuit can be 
connected to an LED or to the DAC.  The 
system emits a positive 5V signal when water 
has crossed the lines. 
 
Electronics Stack 

The electronics stack is structurally 
supported by an adjustable skeleton of four 
threaded rods with high density nylon 
separators and is housed within the acrylic 
electronics tube. The lower section contains a 

Figure 4: Doppler Velocity Logger 

Figure 5: Hydrophone 
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PC104 stack containing a computer, I/O 
connections, and a DAC, the upper section 
contains relays and external connectors, and 
the DC/DC amplifier board rests along the 
side. 

 
PC104 Stack 
Computer 

This year Duke Robotics is using a 
new Versalogic EPM-CPU-10 with a Pentium 
III/Celeron processor as the main computer. 
Rated at 566 MHz, the processor is throttled to 
350 MHz to minimize waste heat. This board 
also has 256 MB of low power RAM. An IDE 
controller is connected to 20GB 2.5� laptop 
hard drive, which is used to store system 
software and logs. 

The Versalogic computer has a 
breakout ribbon cable that precludes the need 
for a separate I/O board. This gives us the 
capability to connect the DVL and Altimeter 
via RS-232 Serial and the two cameras via 
USB. There is also an Ethernet port that is 
used by our floating wireless buoy. 

 
Data Acquisition Card 

The DAC is a Diamond Systems MM-
32-AT with 4 analog output pins and 32 
analog inputs. The inputs are used to monitor 
the power level of the batteries and get 

information from some of the sensors, such as 
the pressure sensor. The analog outputs are 
used to control the four thrusters. There are 
also several digital output pins, which are used 
to control relays like those that trigger the 
marker droppers. 

 
Power Management Board 

Also on the PC104 stack is a power 
management board that controls power 
distribution to both the electronics stack and 
thrusters. Power is input from the batteries and 
sent to each thruster. Electronics power is sent 
to the DC/DC converter inputs. Finally, a 
voltage divider sends 1/11 of the input voltage 
on to the DAC to allow monitoring of battery 
strength. This division allows the DAC, with 
its maximum input of 10V, to measure the 
level of the 33V-maximum battery output. 

 
Relays 

Digital outputs from the DAC are used 
to trigger Crydom relays to control robot 
functions. These relays are located in the upper 
electronics stack and respond to +5V. Two of 
these relays utilize power from the thruster 
supply to activate the marker droppers. 

 
DC/DC Converter 

The DC/DC Converter is mounted 
alongside the main electronics structure and 
generates the voltages used by onboard 
electronics. It creates a floating ground and the 
three available power supplies: +5V, +12V, 
and -12V. Even if the input battery voltage 
fluctuates between 18V and 36V, the outputs 
will remain stable. The board contains 
Astrodyne and Astec converters; the Astec 
chip supplies +5V and the Astrodyne chip 
supplies low wattage -12V and +12V 
channels. The custom board was redesigned in 
2005 to feature lower power chips that output 
less heat. This design change was in response 
to the power board in 2004 constantly 
overheating during prolonged use, causing 
drops in the power supply. 

Figure 6: Electronics Stack 
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Reed Switch 
To satisfy the safety requirement of an 

emergency kill switch, Duke Robotics wanted 
to use something new and innovative. We 
turned to a reed switch, which contains two 
contacts in a glass tube that is filled with an 
inert gas. The switch is closed in the presence 
of a magnetic field and open in its absence. On 
Charybdis, the switch controls a relay that sits 
between the batteries and the rest of the 
vehicle. A red permanent magnet connected to 
a bright yellow cord provides the magnetic 
field, and can be removed easily by a diver, 
thus disconnecting the batteries from all 
electronics and thrusters. The reed switch is 
more consistent and much easier to operate 
than a traditional throw switch because the 
magnet simply needs to be removed and is 
easily grasped. Because of the sealed nature of 
the switch, it is ideal for underwater use. 
 
Batteries 

This year Duke Robotics upgraded to 
Lithium Polymer batteries, which provide 
eight times the power density of lead-acid 
ones. Specifically, four 14.8V 8000mAh 
ThunderPower batteries are employed. Two 
packs are connected in series to provide 29.6V 
for the thrusters, and two packs are in series to 
supply 29.6V to the electronics tube. This 
configuration provides 6-8 hours of computing 
time an d 1-2 hours of thruster use. Batteries 
are recharged in about 4 hours with an Orbit 
Microlader charger. 

Care needs to be taken that the 
batteries do not drain below 10% of their 
charge (about 24V). The voltage levels of each 
system are measured through the DAC and 
monitored by the computer, which can shut 
down to prevent damage. This data also allows 
the computer to update the thruster algorithms 
to compensate for lower available voltage. 
LED battery monitors are also available for 
optional use that can display the real-time 

voltages of each battery through the 
transparent tube. 
 
Operating System 

The computer boots from the hard 
drive into a slimmed-down version of 
Slackware 9.1 operating the Linux 2.6.6 
kernel. The PWC (Philips Webcam) 9.0 kernel 
module drivers are used to control the two web 
cameras. The DAC is operated with the 
Diamond Systems Universal Driver 5.8 
interface library. The Linksys Prism 2.5 
wireless PCMCIA card is supported by the 
linuxwlan driver, allowing ad-hoc network 
communication with the computer. 
 
High Level Software Control 

The control system is written entirely 
in C++. With the exception of the DAC 
library, libjpeg for image IO, libpthread for 
POSIX threading, and the C++ runtime 
library, all the code is written from scratch. 
GCC version 3.2 or ICC version 8.0 are used 
to compile a program that runs as a single 
multi-threaded process. 

When the mission preparation begins, a 
configuration file is loaded that contains all of 
the modifiable settings for the system, such as 
calibration values, propulsion control 
variables, log options, and flags that enable or 
disable each of the main devices. Each 
component of the system reads information 
that it requires for initialization from this 
configuration file and attempts initialization 
accordingly. 
 
Device-Software Interfaces 

Devices that are treated as self-
managing components include the propulsion, 
Doppler velocity logger (DVL), altimeter, 

Figure 7: Lithium Polymer Battery 
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acoustics, pressure sensor, digital acquisition 
card, and cameras. All of these components 
except the pressure sensor and the DAC create 
their own parallel execution thread during 
initialization. The threads that handle the 
DVL, altimeter, acoustics, and cameras each 
perform input and output in a continuous loop, 
delivering data and updating shared 
information without blocking the execution of 
the rest of the system. For instance, the DVL 
and altimeter components are each constructed 
with knowledge of a RobotState object. As 
each component receives data (in the case of 
the DVL and altimeter, over the RS232 serial 
ports) it updates the appropriate variables in 
the RobotState object. Concurrent access to 
shared data is protected with synchronization 
variables. Once all components are initialized, 
the system enters a loop of event generation 
and handling. 
 
Propulsion Control 

The propulsion component receives 
requests for waypoints and other navigation, 
and processes these requests by continuously 
calculating the desired force and torque to 
exert on the vehicle as a function of its spatial 
state at the time. The component then converts 
these forces to desired thrusts to be delivered 
by each of the four thrusters. Each thrust is 
converted into a voltage using a cubic 
regression model of the control voltage/thrust 
relationship of the thrusters (which is 
nonlinear). All of the variables that affect the 
translation of waypoint to thrust and thrust to 
voltage are exposed in the configuration file 
for easy tweaking. The propulsion component 
accesses a RobotState object from which it 
determines the current position of the vehicle 
at any time, as well as the access to the DAC 
component used to change the thruster outputs. 
Because the propulsion component is 
completely self-contained, the entire 
propulsion system of the robot could be 
changed without any of the rest of the code 

changing. The interface with the new 
propulsion system would be identical. 
 
Mission Control Logic and 
Waypoint Entry 

The control system is event based, 
meaning it changes the behavior of the vehicle 
by responding to certain pre-programmed 
events. Most of these events are generated by 
the system itself, and at any time the current 
behavior of the robot determines how it 
responds to events. Important examples that 
behaviors handle are enter, think, leave, and 
frame events. The enter event is generated 
when a behavior object is activated for the first 
time. The think event is generated periodically 
(typically ten times a second) so that the active 
behavior can perform its processing. The leave 
behavior is generated when the current 
behavior has finished its processing and a new 
behavior is about to be activated. The frame 
event is generated by the camera components 
when new frames are received from the 
cameras. 

Consider the Waypoint behavior as an 
example of how a behavior processes events. 
When the Waypoint behavior receives the 
enter event, it requests a new target position 
and heading via the propulsion component. 
Once the request is made, the propulsion 
system concurrently tries to achieve the target. 
The Waypoint behavior responds to the think 
event by checking whether the vehicle has 
come within a specified tolerance of its target, 
or whether too much time has elapsed. When 
either of these conditions is met, it notifies the 
system that it has completed, and the leave 
event is generated. 

Any behavior can queue other 
behaviors for later execution or push behaviors 
ahead of itself on the stack, allowing complex 
behavioral control at runtime. Furthermore, the 
frame event is processed in a separate thread 
of execution, so that longer-running image 
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processing routines do not interfere with the 
handling of think events. 

To further assist rapid modification of 
behavior and testing, the control system 
supports a custom scripting language created 
specifically for AUV control. The scripting 
language resembles C++ or Java, with the 
exception that it is loosely typed. It supports 
real numbers, strings, three-dimensional 
vectors and lists as primitive types and allows 
arbitrary compound user type declarations 
(similar to classes in C++ or Java, but without 
polymorphism). User types that have certain 
methods such as onThink(...) and onFrame(...) 
can be used as behaviors. At runtime, script 
files are read, parsed, and translated to virtual 
machine code. When an event is handled by 
the system, the system passes it to the active 
behavior. If the active behavior has an 
associated scripting object, a virtual machine 
runs the object's appropriate event handler 
method. Because the scripts are interpreted, 
there is no need to recompile to test a change, 
and arbitrary behavior can be expressed in the 
scripting language (as opposed to simply 
expressing data to be used by compiled code). 
Any real processing is done by native C++ 
functions with an interface exposed to the 
scripts, so that there is no performance loss 
when processing images. The scripting engine 
is also employed to process the configuration 
file, so that arbitrary expressions such as 
�dvl.offset_from_center = [0,0.5,0];� can be entered 
as settings. 
 
Vision and Cameras 

Charybdis has two possible vision 
systems that can be used.  The first is based on 
digital USB webcams; the second consists of 
analog underwater cameras combined with a 
digital frame grabber. 

Charybdis� digital system uses two 
Logitech QuickCams for vision-based 
navigation.  The QuickCams are installed in a 
waterproof tube and connect to the Electronics 
tube through a Subconn cable.  The cameras 

are interfaced with the Versalogic computer 
using standard USB cables.  The cameras 
provide 640 X 480 video feed, with optional 
1.3 Mega pixel still images and zoom features.  
The computer is able to process about 10 
frames/sec, allowing the AUV to detect 
interesting features even while moving at full 
speed through the water.  One camera is 
downward facing in order to detect markings 
along the bottom of the pool.  The other 
camera faces forward in order to detect the 
LED lights of the docking station.  The 
cameras gather and store images on the 
computer while the software analyzes the 
images for shapes that signify LED sources 
and shapes. 

For analog vision, Charybdis has a 
Parvus FG104 frame grabber combined with 
two underwater cameras.  The frame grabber 
has 4 composite analog video inputs and can 
capture at a resolution of 768x576 at 30fps.  
The card utilizes the PC/104 bus.  The frame 
grabber is used in combination with analog 
video cameras to provide vision for the AUV. 
The cameras are mounted in the same 
orientations as the webcams, except without 
the need for air tubes. Vision is processed in 
the same manner as for the webcams. 

While seeking the horizontal light 
positioned near the floor targets, the event 

Figure 8: Cameras 
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handler for the frame event first checks the 
amount of cyan in the image. If this is below a 
threshold, then the system considers the light 
absent from the image. If the threshold is met, 
the handler finds the center of mass of cyan in 
the image and considers this the center of the 
light. Next, the vehicle modifies its target 
waypoint to correspond with the direction of 
the light. 

To find the pipe break, each frame's 
gradient field is computed, and this field is 
thresholded by Euclidean magnitude to 
identify edge pixels. Then connected 
components (corresponding to non-edge 
regions) are identified with a queue-based fast 
flood fill algorithm. Very small regions are 
discarded. The star-shaped boundary of each 
such region is computed with the center of 
mass used as the center of the star. This 
boundary is simplified by joining segments 
that are nearly collinear to specified 
tolerances. The result is a coarsened shape 
boundary for each region, represented by a 
simple polygon. 

To detect whether these shapes 
correspond to the shape of the pipe break, each 
boundary's four longest segments are 
determined, and these edges' intersections are 
taken as corners. If the estimated corners have 
angles within specified bounds, the shape is 
considered a quadrilateral, and its position is 

marked as a possible pipe break. The vehicle 
finds as many �breaks� as it can, then drops a 
marker over the best defined break. All of the 
processing occurs in real time (under 100 ms 
for 10 fps camera feed) on the single CPU. 

 
Conclusion 

Charybdis is Duke�s second generation 
of an AUV; Charybdis is in its own third 
revision. Undoubtedly there are flaws in the 
design or improvements that can be made, but 
this vehicle represents the total combined 
knowledge that the Duke Robotics Team has 
gained from Charybdis 2005, Gamera, and 
background research. After improving the 
vision, power, acoustics, and mechanical 
systems, Charybdis is far less prone to failure 
and much more capable. Most systems, 
whether electrical, mechanical, or software, 
contain new innovations and improvements, 
and all components have been carefully 
selected or constructed to conform to the 
highest standards of craftsmanship and 
upgradeability. The synthesis of these 
components is a robot that the Duke Robotics 
Team believes will be exceptionally 
competitive in San Diego at the ONR/AUVSI 
Underwater Competition, and will certainly 
inspire new adaptations of its cutting-edge 
design. 
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