
Duke Robotics Team 1

Gareth Guvanasen, Brian Hilgeford, Andrew Waterman,
John Felkins, Josh Johnston, Tyler Helble, Ethan Eade

Faculty Advisor: Dr. Jason Janet, PhD

In keeping with the Duke Robotic�s goal of ever increasing innovation, the team has

worked to improve all facets of Charybdis, our autonomous underwater vehicle (AUV).
Using the lessons learned over the past few years, Charybdis builds upon its strengths while
addressing the many weaknesses in the previous design. This year Charybdis retains its
hallmarks of agility, precision navigation, and light weight while gaining greater
environmental sensory capability and translational movement control.

With the help of strong sponsorship support from Duke University and private donors,
the Duke Robotics Team upgraded a large part of the Charybdis feature set by adding
stabilizing fins, a refined acoustics system, improved power conversion chips, and enhanced
vision software.

As before, Charybdis is constructed with commercial-grade components and
craftsmanship in order to provide a reliable and stable platform. Lithium polymer batteries
provide power to the thrusters and the electronics tube, which houses a new Versalogic
computer, Diamond Systems DAC, wireless Ethernet card, power management board, relays,
and DC/DC converters. Subconn connectors that pass through the tube bulkheads are used to
prevent leaks. A powerful software suite includes device drivers that control a full set of
sensors, computer vision algorithms, high-level mission control and decision-making
software, as well as a scripting language supporting intuitive entry of mission parameters.

Duke Robotics Team 2

Introduction
After the 8th Annual Office of Naval

Research/AUVSI International Underwater
Robotics Competition in 2005, Duke Robotics
decided to address several weaknesses of the
vehicle that surfaced during and after the
competition. Charybdis was revised in an
effort to increase the versatility and stability of
our already innovative platform. Charybdis
itself was created as a successor to our unique
Gamera AUV that competed in the 2001-2003
competitions.

Charybdis was designed around a
unique and groundbreaking propulsion system.
Three thrusters mounted around a circular
chassis enable the vehicle, with appropriate
control algorithms, to move in any direction
without rotating, yielding full holonomic
control. A fourth thruster positioned vertically
controls up and down motion. This system
allows for unprecedented precision and agility
in an Autonomous Underwater Vehicle. Other
physical components were designed around
this basic plan, with the airtight electronics and
battery tubes arranged with the sensors around
the central thruster housing. Two translucent
acrylic shells encapsulate these components
for protection and to remove concepts of
�front� and �back� from the drag profile.

The electronics suite was rebuilt with
new components to simplify the electronics
stack and increase reliability. This task was
completed with an eye toward upgradeability
and with the intention of not having to unseal
the electronics tube unless a new component is
being installed. The power system was also
upgraded from lead acid to lithium polymer
batteries, providing 8 times the power density.

Finally, the software package was
completely redesigned with a new, more
intuitive waypoint scripting language. The rest
of the mission and control logic was rewritten
to place the entire body of code within a
modular, object-oriented framework.

Propulsion
Three Tecnadyne 250 propeller-based

thrusters are mounted around the perimeter of
the round hull, each 120 degrees apart. Since
each thruster has bi-directional variable power,
it is possible to move in any horizontal-plane
direction by using the correct combination of
thrust. A fourth thruster is mounted vertically
in a low-loss channel that runs through the
middle of the vehicle and allows vertical
control. This gives Charybdis 4 DOF
holonomic control, while pitch and roll are
taken care of with a positive righting moment
created by appropriate weight and flotation
distribution.

This central thruster, which draws
water through the machine, is the inspiration
for the vehicle's name. In Greek mythology
Charybdis was the daughter of Poseidon and
Gaia until Zeus turned her into a monster. She
lived in a cave in the Straight of Messina and
sucked water in and out three times a day,
forming a whirlpool that destroyed passing
ships. Charybdis, opposite the straight from
the six-headed monster Scylla, was one of the
obstacles in Homer's Odyssey.

A mathematical model was developed
that determines the thrust contribution from
each thruster to move in a particular direction.
This model ensures that the overall net thrust
vector passes through Charybdis' center of
mass (which is roughly the center of drag),
thereby preventing a rotational moment. The
Tecnadyne thrusters don't have a linear force
response to voltage, nor are they
symmetrically powerful, having 12 lbs thrust

Figure 1: Thruster

Duke Robotics Team 3

in the forward direction and only 6 in reverse.
Thus, a lookup table was added that converts
the desired force contribution from each
thruster into the required voltage, taking into
account these nonlinearities. The computer
applies this voltage through a DAC card and
amplifiers, which are on a separate circuit
from the electronics to protect the sensitive
devices from high current.

The central thruster is simpler. It gives
control in the vertical direction, or Z-axis.
Since this thruster is located at the center of
mass, there is never a concern about a
rotational moment. A low-loss channel runs
through the vehicle with the thruster mounted
in the middle. This channel also serves a
mechanical purpose by taking weight off of
the shells and sensors during storage and
display of the vehicle. The Z-axis thruster is
oriented with the more powerful side pointed
upward to counteract the natural slight
buoyancy of Charybdis.

In the 2004 competition Charybdis�s
center thruster control chip was damaged by
water in a pierced cable. To prevent future
leakage, all thruster end caps were upgraded
with bulkhead connectors to guarantee full
water blockage. Micro connectors were used
on the thrusters and the electronics tube end
cap to reduce the space consumed by
connectors. A backup thruster was also
acquired as a spare, as our platform depends

on all four thrusters being operational for total
control.

Connectors and Wet/Dry
Interfaces

Consistent with the Charybdis design
team's goals of industry standard construction
and components, all electrical connections and
wet/dry interfaces use Subconn Low Profile
Series underwater connectors. These 4 and 7
pin cables can be wet mated and will not short
or leak. Components were either purchased
with Subconn cabling, as in the case of the
thrusters, or were sent to Open Ocean
Engineering to have Subconns potted onto the
open-ended whips, like the DVL. The
aluminum end caps of the electrical, battery,
and camera housings all have Subconn
bulkhead connectors to ensure that water
doesn't enter these dry spaces. The 2005
vehicle utilizes many Micro Low Profile
Series connectors to reduce the space used by
bulkhead connectors for easier and faster cable
connection/disconnection.

Chassis and Shells

Ultra-High Molecular Weight
(UHMW) polyethylene was selected to serve
as the chassis. This decision was made based
on the Duke Robotics Team's success using
this material on Gamera. Work began by
cutting a circle 28" in diameter with Abrasive
Water Cutting Techniques, and then holes
were added for the electronics and battery
tubes, DVL, pressure sensor, camera housing,
altimeter, and central thruster. Some later
adjustments were made with the mill in the
Duke Undergraduate Machine Shop.

The translucent shells were fabricated
by free-form techniques out of acrylic. They
have holes to allow the sensors and central
thruster to protrude unimpeded. The purpose
of these shells is to protect the internal devices
from damage, as well as to move the center of
drag to the middle of the vehicle, to coincide

Figure 2: Z-Intake

Duke Robotics Team 4

with the center of mass. Without the shells, it
would be difficult to move in a straight line
because the direction-dependent drag profiles,
from protrusions such as sensors and the
electronics tube, would cause Charybdis to
spin and complicate control algorithms.

Static Stabilizer Fins

The static stabilizer fins, one set
located on each side of the rear, eliminate the
high-velocity pitch control problems of
previous years. They now allow Charybdis to
operate with at least 150% of its previous
velocity threshold, making the robot much
more competitive in the event that time
becomes a deciding factor. They have an angle

of attack less than 12 degrees to avoid the
development of significant drag forces and are
located as far towards the back as possible
without adding extensions. This is to provide
the maximum correcting moment without
compromising the radial symmetry that gives
the robot full holonomic capabilities.
 A new chassis has been developed to
include dynamic stabilizer fins that are
actively controlled by the computer. They are
to be deployed only when critical velocities
are achieved so that they do not interfere with
holonomic sensor sweeping. This technology

is still being perfected, but will make its debut
in a subsequent competition.

Electronics and Battery
Housings

Two dry tubes are used to house the
electronics and batteries. Each is constructed
of clear acrylic and capped with anodized
aluminum bulkheads equipped with double O-
ring seals. The battery housing is 12" long
with 4.5" external diameter, while the
electronics tube has greater volume at 10.5"
length and 8" external diameter. Both of these
sizes were chosen to maximize usable space
and fit between the center thruster mount and
outer shells of the robot.

Buoyancy

The two dry compartments, containing
the batteries and electronics, have positive net
buoyancy. These elements sit opposed to the
DVL, which, due to its weight, has negative
net buoyancy. To balance Charybdis, flotation
inserts for the DVL area were created from
shape-able foam and weights were added near
the two tubes. Charybdis is slightly positively
buoyant as a safety measure, causing the
vehicle to surface in the event of a power loss.

Pressure Sensor

Charybdis uses an MSP-600 pressure
sensor manufactured by MSI. The output of
this sensor is in the form of a 0-5V level,
which is converted by the computer into a
depth measurement. This data is used to
maneuver and remain submerged. If the robot
deviates too far from the desired depth, the
central thruster is used to make corrections.

Doppler Velocity Logger

This year Duke Robotics completed its
purchase of an RD Instruments Workhorse
Navigator 1200 kHz DVL at a generous
discount. This sensor is the main tool in

Figure 3: Static Stabilizer Fin

Duke Robotics Team 5

Charybdis' dead-reckoning navigation system.
By measuring the Doppler shift from four
SONAR beams, the DVL is able to determine
vehicle speed and, after integrating over time,
distance traveled. It communicates this
information, plus several other useful data
including compass heading, pitch, and roll, to
the main computer using the RS-232 protocol
over a Subconn connection.

Passive Acoustics
Charybdis' acoustics system uses an

array of four hydrophones arranged in a square
about the widest part of the chassis. The DAC
samples the hydrophones to determine the time
each received the ping. An overspecified
system of equations that relates the geometry
of the hydrophone array to the relative times of
receipt is then optimized to find the bearing
angle. In concept, the distance from the
vehicle to the pinger could also be computed
from the pairwise time differences, but the
samples are not yet of sufficient quality to
make this observation practical. A Fourier
transform could be performed on the data to
isolate on a ping of known frequency. This
improvement has been considered for a future
version.

Voltage Meters and
Temperature Sensors

Available for optional use in Charybdis
2005 are temperature and voltage sensors. The
voltage sensors are on a plastic mount that
attaches above or to the back of the DC/DC
board. Two voltage meters indicate the
voltage of each 30-volt battery power channel.
These can be used to visually monitor battery
voltage without using a multimeter. The
meters require an input of 9V DC provided via
a standard 9-volt battery.

The temperature sensing circuits are
two boards with temperature chips mounted to
them. The chips require 5V DC power to
operate. Each chip produces a 0-5V output to
be read by the DAC. The temperature sensors
are placed near temperature-sensitive
components, ideally the CPU and the 5V
DC/DC converter.

Leak Detection System

Available for optional use in Charybdis
2005 is a leak detection system. The system
must be installed into the E-Tube by drawing
two small wires .5cm apart with conductive
ink. The amplification/threshold circuit can be
connected to an LED or to the DAC. The
system emits a positive 5V signal when water
has crossed the lines.

Electronics Stack

The electronics stack is structurally
supported by an adjustable skeleton of four
threaded rods with high density nylon
separators and is housed within the acrylic
electronics tube. The lower section contains a

Figure 4: Doppler Velocity Logger

Figure 5: Hydrophone

Duke Robotics Team 6

PC104 stack containing a computer, I/O
connections, and a DAC, the upper section
contains relays and external connectors, and
the DC/DC amplifier board rests along the
side.

PC104 Stack
Computer

This year Duke Robotics is using a
new Versalogic EPM-CPU-10 with a Pentium
III/Celeron processor as the main computer.
Rated at 566 MHz, the processor is throttled to
350 MHz to minimize waste heat. This board
also has 256 MB of low power RAM. An IDE
controller is connected to 20GB 2.5� laptop
hard drive, which is used to store system
software and logs.

The Versalogic computer has a
breakout ribbon cable that precludes the need
for a separate I/O board. This gives us the
capability to connect the DVL and Altimeter
via RS-232 Serial and the two cameras via
USB. There is also an Ethernet port that is
used by our floating wireless buoy.

Data Acquisition Card

The DAC is a Diamond Systems MM-
32-AT with 4 analog output pins and 32
analog inputs. The inputs are used to monitor
the power level of the batteries and get

information from some of the sensors, such as
the pressure sensor. The analog outputs are
used to control the four thrusters. There are
also several digital output pins, which are used
to control relays like those that trigger the
marker droppers.

Power Management Board

Also on the PC104 stack is a power
management board that controls power
distribution to both the electronics stack and
thrusters. Power is input from the batteries and
sent to each thruster. Electronics power is sent
to the DC/DC converter inputs. Finally, a
voltage divider sends 1/11 of the input voltage
on to the DAC to allow monitoring of battery
strength. This division allows the DAC, with
its maximum input of 10V, to measure the
level of the 33V-maximum battery output.

Relays

Digital outputs from the DAC are used
to trigger Crydom relays to control robot
functions. These relays are located in the upper
electronics stack and respond to +5V. Two of
these relays utilize power from the thruster
supply to activate the marker droppers.

DC/DC Converter

The DC/DC Converter is mounted
alongside the main electronics structure and
generates the voltages used by onboard
electronics. It creates a floating ground and the
three available power supplies: +5V, +12V,
and -12V. Even if the input battery voltage
fluctuates between 18V and 36V, the outputs
will remain stable. The board contains
Astrodyne and Astec converters; the Astec
chip supplies +5V and the Astrodyne chip
supplies low wattage -12V and +12V
channels. The custom board was redesigned in
2005 to feature lower power chips that output
less heat. This design change was in response
to the power board in 2004 constantly
overheating during prolonged use, causing
drops in the power supply.

Figure 6: Electronics Stack

Duke Robotics Team 7

Reed Switch
To satisfy the safety requirement of an

emergency kill switch, Duke Robotics wanted
to use something new and innovative. We
turned to a reed switch, which contains two
contacts in a glass tube that is filled with an
inert gas. The switch is closed in the presence
of a magnetic field and open in its absence. On
Charybdis, the switch controls a relay that sits
between the batteries and the rest of the
vehicle. A red permanent magnet connected to
a bright yellow cord provides the magnetic
field, and can be removed easily by a diver,
thus disconnecting the batteries from all
electronics and thrusters. The reed switch is
more consistent and much easier to operate
than a traditional throw switch because the
magnet simply needs to be removed and is
easily grasped. Because of the sealed nature of
the switch, it is ideal for underwater use.

Batteries

This year Duke Robotics upgraded to
Lithium Polymer batteries, which provide
eight times the power density of lead-acid
ones. Specifically, four 14.8V 8000mAh
ThunderPower batteries are employed. Two
packs are connected in series to provide 29.6V
for the thrusters, and two packs are in series to
supply 29.6V to the electronics tube. This
configuration provides 6-8 hours of computing
time an d 1-2 hours of thruster use. Batteries
are recharged in about 4 hours with an Orbit
Microlader charger.

Care needs to be taken that the
batteries do not drain below 10% of their
charge (about 24V). The voltage levels of each
system are measured through the DAC and
monitored by the computer, which can shut
down to prevent damage. This data also allows
the computer to update the thruster algorithms
to compensate for lower available voltage.
LED battery monitors are also available for
optional use that can display the real-time

voltages of each battery through the
transparent tube.

Operating System

The computer boots from the hard
drive into a slimmed-down version of
Slackware 9.1 operating the Linux 2.6.6
kernel. The PWC (Philips Webcam) 9.0 kernel
module drivers are used to control the two web
cameras. The DAC is operated with the
Diamond Systems Universal Driver 5.8
interface library. The Linksys Prism 2.5
wireless PCMCIA card is supported by the
linuxwlan driver, allowing ad-hoc network
communication with the computer.

High Level Software Control

The control system is written entirely
in C++. With the exception of the DAC
library, libjpeg for image IO, libpthread for
POSIX threading, and the C++ runtime
library, all the code is written from scratch.
GCC version 3.2 or ICC version 8.0 are used
to compile a program that runs as a single
multi-threaded process.

When the mission preparation begins, a
configuration file is loaded that contains all of
the modifiable settings for the system, such as
calibration values, propulsion control
variables, log options, and flags that enable or
disable each of the main devices. Each
component of the system reads information
that it requires for initialization from this
configuration file and attempts initialization
accordingly.

Device-Software Interfaces

Devices that are treated as self-
managing components include the propulsion,
Doppler velocity logger (DVL), altimeter,

Figure 7: Lithium Polymer Battery

Duke Robotics Team 8

acoustics, pressure sensor, digital acquisition
card, and cameras. All of these components
except the pressure sensor and the DAC create
their own parallel execution thread during
initialization. The threads that handle the
DVL, altimeter, acoustics, and cameras each
perform input and output in a continuous loop,
delivering data and updating shared
information without blocking the execution of
the rest of the system. For instance, the DVL
and altimeter components are each constructed
with knowledge of a RobotState object. As
each component receives data (in the case of
the DVL and altimeter, over the RS232 serial
ports) it updates the appropriate variables in
the RobotState object. Concurrent access to
shared data is protected with synchronization
variables. Once all components are initialized,
the system enters a loop of event generation
and handling.

Propulsion Control

The propulsion component receives
requests for waypoints and other navigation,
and processes these requests by continuously
calculating the desired force and torque to
exert on the vehicle as a function of its spatial
state at the time. The component then converts
these forces to desired thrusts to be delivered
by each of the four thrusters. Each thrust is
converted into a voltage using a cubic
regression model of the control voltage/thrust
relationship of the thrusters (which is
nonlinear). All of the variables that affect the
translation of waypoint to thrust and thrust to
voltage are exposed in the configuration file
for easy tweaking. The propulsion component
accesses a RobotState object from which it
determines the current position of the vehicle
at any time, as well as the access to the DAC
component used to change the thruster outputs.
Because the propulsion component is
completely self-contained, the entire
propulsion system of the robot could be
changed without any of the rest of the code

changing. The interface with the new
propulsion system would be identical.

Mission Control Logic and
Waypoint Entry

The control system is event based,
meaning it changes the behavior of the vehicle
by responding to certain pre-programmed
events. Most of these events are generated by
the system itself, and at any time the current
behavior of the robot determines how it
responds to events. Important examples that
behaviors handle are enter, think, leave, and
frame events. The enter event is generated
when a behavior object is activated for the first
time. The think event is generated periodically
(typically ten times a second) so that the active
behavior can perform its processing. The leave
behavior is generated when the current
behavior has finished its processing and a new
behavior is about to be activated. The frame
event is generated by the camera components
when new frames are received from the
cameras.

Consider the Waypoint behavior as an
example of how a behavior processes events.
When the Waypoint behavior receives the
enter event, it requests a new target position
and heading via the propulsion component.
Once the request is made, the propulsion
system concurrently tries to achieve the target.
The Waypoint behavior responds to the think
event by checking whether the vehicle has
come within a specified tolerance of its target,
or whether too much time has elapsed. When
either of these conditions is met, it notifies the
system that it has completed, and the leave
event is generated.

Any behavior can queue other
behaviors for later execution or push behaviors
ahead of itself on the stack, allowing complex
behavioral control at runtime. Furthermore, the
frame event is processed in a separate thread
of execution, so that longer-running image

Duke Robotics Team 9

processing routines do not interfere with the
handling of think events.

To further assist rapid modification of
behavior and testing, the control system
supports a custom scripting language created
specifically for AUV control. The scripting
language resembles C++ or Java, with the
exception that it is loosely typed. It supports
real numbers, strings, three-dimensional
vectors and lists as primitive types and allows
arbitrary compound user type declarations
(similar to classes in C++ or Java, but without
polymorphism). User types that have certain
methods such as onThink(...) and onFrame(...)
can be used as behaviors. At runtime, script
files are read, parsed, and translated to virtual
machine code. When an event is handled by
the system, the system passes it to the active
behavior. If the active behavior has an
associated scripting object, a virtual machine
runs the object's appropriate event handler
method. Because the scripts are interpreted,
there is no need to recompile to test a change,
and arbitrary behavior can be expressed in the
scripting language (as opposed to simply
expressing data to be used by compiled code).
Any real processing is done by native C++
functions with an interface exposed to the
scripts, so that there is no performance loss
when processing images. The scripting engine
is also employed to process the configuration
file, so that arbitrary expressions such as
�dvl.offset_from_center = [0,0.5,0];� can be entered
as settings.

Vision and Cameras

Charybdis has two possible vision
systems that can be used. The first is based on
digital USB webcams; the second consists of
analog underwater cameras combined with a
digital frame grabber.

Charybdis� digital system uses two
Logitech QuickCams for vision-based
navigation. The QuickCams are installed in a
waterproof tube and connect to the Electronics
tube through a Subconn cable. The cameras

are interfaced with the Versalogic computer
using standard USB cables. The cameras
provide 640 X 480 video feed, with optional
1.3 Mega pixel still images and zoom features.
The computer is able to process about 10
frames/sec, allowing the AUV to detect
interesting features even while moving at full
speed through the water. One camera is
downward facing in order to detect markings
along the bottom of the pool. The other
camera faces forward in order to detect the
LED lights of the docking station. The
cameras gather and store images on the
computer while the software analyzes the
images for shapes that signify LED sources
and shapes.

For analog vision, Charybdis has a
Parvus FG104 frame grabber combined with
two underwater cameras. The frame grabber
has 4 composite analog video inputs and can
capture at a resolution of 768x576 at 30fps.
The card utilizes the PC/104 bus. The frame
grabber is used in combination with analog
video cameras to provide vision for the AUV.
The cameras are mounted in the same
orientations as the webcams, except without
the need for air tubes. Vision is processed in
the same manner as for the webcams.

While seeking the horizontal light
positioned near the floor targets, the event

Figure 8: Cameras

Duke Robotics Team 10

handler for the frame event first checks the
amount of cyan in the image. If this is below a
threshold, then the system considers the light
absent from the image. If the threshold is met,
the handler finds the center of mass of cyan in
the image and considers this the center of the
light. Next, the vehicle modifies its target
waypoint to correspond with the direction of
the light.

To find the pipe break, each frame's
gradient field is computed, and this field is
thresholded by Euclidean magnitude to
identify edge pixels. Then connected
components (corresponding to non-edge
regions) are identified with a queue-based fast
flood fill algorithm. Very small regions are
discarded. The star-shaped boundary of each
such region is computed with the center of
mass used as the center of the star. This
boundary is simplified by joining segments
that are nearly collinear to specified
tolerances. The result is a coarsened shape
boundary for each region, represented by a
simple polygon.

To detect whether these shapes
correspond to the shape of the pipe break, each
boundary's four longest segments are
determined, and these edges' intersections are
taken as corners. If the estimated corners have
angles within specified bounds, the shape is
considered a quadrilateral, and its position is

marked as a possible pipe break. The vehicle
finds as many �breaks� as it can, then drops a
marker over the best defined break. All of the
processing occurs in real time (under 100 ms
for 10 fps camera feed) on the single CPU.

Conclusion

Charybdis is Duke�s second generation
of an AUV; Charybdis is in its own third
revision. Undoubtedly there are flaws in the
design or improvements that can be made, but
this vehicle represents the total combined
knowledge that the Duke Robotics Team has
gained from Charybdis 2005, Gamera, and
background research. After improving the
vision, power, acoustics, and mechanical
systems, Charybdis is far less prone to failure
and much more capable. Most systems,
whether electrical, mechanical, or software,
contain new innovations and improvements,
and all components have been carefully
selected or constructed to conform to the
highest standards of craftsmanship and
upgradeability. The synthesis of these
components is a robot that the Duke Robotics
Team believes will be exceptionally
competitive in San Diego at the ONR/AUVSI
Underwater Competition, and will certainly
inspire new adaptations of its cutting-edge
design.

References:
Duke University Robotics Team http://robotics.pratt.duke.edu/archives/2005-2006/
ONR/AUVSI Underwater Competition http://www.auvsi.com/competitions/water.cfm
Subconn Connectors http://www.subconn.com, http://www.deepocean.com
Thrusters http://www.tecnadyne.com
DVL http://www.rdinstruments.com/
Pressure Sensor http://www.msiusa.com
Computer http://www.versalogic.com
DAC http://www.diamondsystems.com
Batteries http://www.thunderpower-batteries.com//
Hydrophones http://www.reson.com
Slackware 9.1 http://www.slackware.com
libjpeg for image IO http://www.iig.org
libpthread for POSIX threading http://pauillac.inria.fr/~xleroy/linuxthreads/

